Новейший энергоблок БРЕСТ: мир замер в восхищении от проекта "Росатома"

© Сибирский химический комбинат / Перейти в фотобанкСтроительство новейшего атомного реактора на быстрых нейтронах БРЕСТ-ОД-300 в Северске
Строительство новейшего атомного реактора на быстрых нейтронах БРЕСТ-ОД-300 в Северске - Sputnik Латвия, 1920, 25.06.2021
Новость о строительстве новейшего атомного энергоблока БРЕСТ-ОД-300 облетела многие СМИ, но в чем конкретно состоит прорыв, достигнутый российскими ядерщиками? Раскладываем по полочкам
Восьмого июня 2021 года в городе Северске, что в Томской области, "Росатом" начал строительство нового и даже новейшего атомного энергоблока БРЕСТ-ОД-300, пишет Борис Марцинкевич на Sputnik Литва.
Разумеется, эта новость облетела все федеральные СМИ. Интерфакс: "БРЕСТ-ОД-300 - ключевым элементом энергетического комплекса, который позволит перерабатывать ядерное топливо бесконечное количество раз, в результате ресурсная база атомной энергетики станет практически неисчерпаемой". ТАСС: "БРЕСТ-ОД-300 - российский проект реакторов на быстрых нейтронах со свинцовым теплоносителем. Новый конкурентоспособный продукт должен обеспечить лидерство российских технологий в мировой атомной энергетике". РИА Новости: "Росатом" начал строить уникальный реактор БРЕСТ в Томской области. Это реакторная установка, обладающая свойствами естественной безопасности, исключающей аварии типа Чернобыльской и случившейся на АЭС "Фукусима". Новые технологии позволят решать сырьевые и экологические задачи атомной отрасли, а также укрепить режим нераспространения. Свойства плотного нитридного уран-плутониевого ядерного топлива и свинцового теплоносителя дают возможность работать БРЕСТу в так называемом равновесном топливном режиме: когда ядерного "горючего", плутония, нарабатывается столько, сколько "сгорает". "Ведомости": "В Северске на площадке Сибирского химического комбината началось строительство атомного энергоблока с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300 со свинцовым теплоносителем и смешанным нитридным уран-плутониевым топливом, оптимальным для реакторов на быстрых нейтронах".

Изобилие терминологии скрывает физический смысл

Все замечательно, вот только одно непонятно: кто-то из тех, кто не вовлечен тем или иным образом в атомную энергетику, в атомную физику, может понять из этих сообщений, о чем конкретно идет речь? Реактор — инновационный, топливо — нитридное, теплоноситель — свинец, сырьевые, экологические проблемы — решаются, режим нераспространения — соблюдается, заливка первого бетона на Сибирском химкомбинате — началась. Все факты на месте, но о чем речь? Реакторы на быстрых нейтронах у России и так имеются, БН-600 и БН-800 в составе Белоярской АЭС работают уверенно, всему миру на зависть — ни в одной другой стране такого и в помине нет. Равновесный режим, экологическая проблема, "Фукусима" и "Чернобыль" невозможны, какой-то "горючий" плутоний горит, но не сгорает, а безопасность — естественная. Все слова написаны на русском языке, но смысл предложений далеко не очевиден.
Марцинкевич объяснил, кто стоит за атомным скандалом в Чехии - Sputnik Латвия, 1920, 21.04.2021
Видео
Скандал в Чехии: Марцинкевич объяснил, чем обернется для Праги атомный разрыв с РФ
Необходимость "расшифровать" всю эту терминологию очевидна: вся мировая наука замерла в восхищении, а мы сами не можем понять, что же такое у нас на глазах "Росатом" начинает реализовывать. В Северске начали строить нечто невероятно инновационное, что решит кучу каких-то проблем и гору задач, потому что там в реакторе будет свинец и нитридное топливо — звучит прекрасно, но это уровень – "Дети, а вот эта очень сложная машина делает очень интересные вещи, которые всем нам необходимы, а потому машина — очень хорошая и нужная, ни у кого больше такой нет".

Об изотопах урана и о цепных реакциях деления

Для того, чтобы начать разбираться, что к чему, в общем-то, достаточно припомнить школьную "формулу" цепной ядерной реакции деления: "Свободный нейтрон, врезаясь в ядро атома урана, разваливает его на части, при этом образуются два новых свободных нейтрона, они врезаются уже в два ядра атомов урана, следующие четыре свободных нейтрона..." и так далее. Все совершенно точно, но есть ряд деталей, в которых известно, кто всегда прячется. Это описание касается не всего урана, который мы добываем из руды, которую мы добываем в шахтах и карьерах, а только его изотопа урана-235 — в его ядре "упакованы" 92 протона и 143 нейтрона. Такого изотопа у природной руды — всего 0,7 процента, а почти все остальное, то есть 99,3 процента - это уран-238 (все те же 92 протона, но нейтронов — 146). А уран-238 в цепной реакции не участвует — невозможны для него "один нейтрон выбил два нейтрона, два нейтрона выбили четыре", уран-238, грубо говоря, просто "съест" этот свободный нейтрон, на том все и закончится.

Уран обогащенный и уран обедненный

Из этих физических свойств изотопов урана-235 и урана-238 — сразу два следствия. Урановой руды атомной энергетике нужно не просто много, а очень много. Богатыми считаются руды, в которых содержится один процент природного урана — следовательно, из 100 тонн руды можно получить тонну урана, в котором необходимого энергетике урана-235 всего семь килограммов. На горно-обогатительных заводах в "хвосты" уходят 99 тонн пустой породы, а на предприятиях, где происходит обогащение урана по содержанию урана-235, "хвостами" станут 993 килограмма урана-238. Технологии обогащения урана по изотопу-235 совершенствовались с самого начала "атомной эры", но и сейчас, и даже в России, все 0,7 процента урана-235 извлечь из "балласта" в виде урана-238 не получается. В хвостах российских обогатительных заводов остается 0,1 процента урана-235, в хвостах европейских обогатительных заводов — до 0,3 процента.
Именно более развитые российские технологии — причина того, что европейские государства время от времени отправляют свои хвосты на переработку "Росатома": то, что для Европы не более чем неиспользуемый балласт, для заводов холдинга ТВЭЛ — вполне приличное, пригодное к обработке сырье. Но это, конечно, отдельная история, к ней можно вернуться в следующий раз, а пока второе следствие, тоже вполне очевидное: ядерное топливо для АЭС стоит достаточно дорого, а природного урана при таком способе его использования, как сейчас, надолго не хватит. Мало того — как известно, уран един, но он в двух лицах, поскольку его можно использовать в атомной энергетике, а можно и для создания атомного и ядерного оружия.
Истории.doc - Sputnik Латвия, 1920, 23.05.2021
"Кембриджская пятерка": агенты СССР на пороге ядерной войны
Ядерного оружия на планете немало, потому на площадках действующих и уже остановленных заводов по обогащению урана накоплены многие тысячи тонн урана-238, который зачастую называют обедненным. Тот уран, который уходит на АЭС и в ядерные арсеналы, — обогащенный, а тот, что лежит на заводской площадке — обедненный, названия вполне логичные. По данным "Гринпис", в 1996 году запасы обедненного урана составляли в странах, где активнее всего шло обогащение: Франция — 190 тысяч тонн, Россия — 500 тысяч тонн, США — 740 тысяч тонн. Добытого в недрах планеты, очищенного от пустой породы, доставленного на предприятия по обогащению, неоднократно переработанного, заскладированного в таком виде, который обеспечивает оптимальный режим хранения. Если найти, разработать, научиться применять технологию, которая позволяла бы использовать уран-238 для производства энергии — получится огромный запас, причем в очень хорошо подготовленном состоянии, все описанные этапы уже оплачены, в основном — в годы всеобщей ядерной гонки.

Нейтроны быстрые и нейтроны тепловые, или "Открытый ядерный топливный цикл"

Есть у урана-238 и у урана-235 еще одна характеристика, из-за которой нынешняя атомная энергетика на 99,5 процента состоит из так называемых тепловых реакторов. В атомной физике такие характеристики, как скорость движения ядерных частиц и их температура — тождественные понятия, то есть реакторы на быстрых нейтронах можно называть и реакторами на нейтронах горячих, но как-то такой вариант не прижился. И то же, но в другую сторону — тепловые реакторы мы имеем полное право называть медленными, но опять же — не прижилось. После того, как свободный нейтрон "разбивает" ядро атома урана, осколки разлетаются с разными скоростями, что совершенно неудивительно. Ради эксперимента швырните камень в стекло — осколки получатся разного размера, какие-то улетят далеко, какие-то лягут на землю рядышком.
Эксперименты ученых-атомщиков показали, что свободные нейтроны с высокими скоростями до ядер урана-235 практически не добираются — их, грубо говоря, перехватывают ядра урана-238. Перехватывают настолько уверенно, что никакой цепной реакции не получается, свободных нейтронов для нее просто не остается. Для борьбы с этой проблемой используются сразу два способа — во-первых, то самое обогащение, наращивание содержания урана-235 в ядерном топливе в среднем до пяти процентов, то есть концентрация урана-235 в ядерном топливе в семь раз выше, чем в природном уране. Но остальные 95 процентов ядерного топлива — это тот самый уран-238, который быстрые свободные нейтроны "ловит" и "ловит". А вот в том случае, если нейтроны будут медленными, тепловыми, уран-238 их "не замечает", а уран-235 хорош тем, что цепная реакция в нем возникает что от тепловых нейтронов, что от быстрых с равным успехом. Вывод — в активной зоне реактора нужен замедлитель, который превратит все нейтроны в тепловые (медленные), что и гарантирует возможность управляемой цепной реакции деления. Химических элементов, обеспечивающих замедление нейтронов, не так уж много: чистый графит, вода с высоким содержанием дейтерия (она же – "тяжелая вода") и вода обычная, но химически очищенная от всех примесей. Уран-графитовые реакторы исторически были первыми — именно их использовали для наработки оружейного плутония, то есть для создания ядерного оружия.
Женщина молится о жертвах землетрясения 2011 года - Sputnik Латвия, 1920, 12.03.2021
Фото
Десять лет атомной аварии на "Фукусиме": Япония скорбит и помнит
Канадцы сосредоточились на реакторах с тяжелой водой, но основная часть действующих атомных энергоблоков относится к водо-водяному типу. Название несколько нелепое, но отражает физическую идею: вода одновременно служит и замедлителем, и теплоносителем, то есть "тормозит" нейтроны и забирает на себя энергию ядерных реакций, набирая температуру, которой достаточно для получения горячего пара, который и вращает турбину, генерирующую электроэнергию. Впервые такие реакторы были использованы для атомных подлодок, но потом вышли на сушу и доказали, что являются наиболее надежными и экономически выгодными. Выгодными, но при всем перечисленном — при неиспользовании сотен тысяч тонн обедненного урана. Это — описание открытого ядерного топливного цикла, при нем ядерное топливо используется один раз, и дальнейший путь облученного ядерного топлива (ОЯТ), после того, как его извлекают из реактора — переработка и захоронение. При этом захоронение — тоже непростая и дорогостоящая процедура, в настоящее время только Финляндия способна обеспечить захоронение ОЯТ в подобранных гранитных структурах, которыми изобилует Скандинавия. Если коротко — то и уран расходуется не самым сберегающим способом, и на захоронение предстоит отправлять сотни тысяч тонн ОЯТ. Это дает массу поводов для критики противникам атомной энергетики, которую можно сформулировать коротко: АЭС дороги при строительстве, ядерное топливо дорого при производстве, захоронение ОЯТ — это тоже дорого, а потому, несмотря на отсутствие углекислого газа в выхлопах, технология перспектив не имеет.

От тепловых реакторов к реакторам на быстрых нейтронах

Однако практика использования реакторов на тепловых нейтронах и внимательное наблюдение за состоянием топлива в активной зоне реактора убедительно доказали точность теоретических вычислений. Несмотря на обогащение по урану-235 и на использование замедлителя, часть нейтронов все же добирается до ядер урана-238, и в небольшом количестве случаев уран-238 испытывает трансмутации — последовательные превращения в ядра других химических элементов, в числе которых и плутоний-239. А плутоний-239 хорош тем, что охотно вступает в цепную реакцию деления, тем самым увеличивая общую теплоотдачу используемого ядерного топлива. Вступает в реакцию немедленно, прямо в реакторе, но полностью "выгореть" не успевает — в ОЯТ тепловых реакторов его остается около одного процента и, если научиться его выделять из общего состава ОЯТ, его можно использовать в качестве "добавки" к обычному урановому ядерному топливу. Не успевает полностью выгореть и уран-235. Химики пришли на выручку в обоих случаях, разработав технологию выделения из ОЯТ и плутония, и урана-235.
АЭС Аккую: как Россия строит первую турецкую атомную электростанцию - Sputnik Латвия, 1920, 11.03.2021
Видео
АЭС "Аккую": как Россия строит первую турецкую атомную станцию
Дальнейшие исследования показали, что в активной зоне реактора образуется не чистый плутоний-239, который используется как начинка ядерного и термоядерного оружия, а смесь сразу трех изотопов — плутоний-239, 240 и 241. Технологий разделения такой смеси изотопов нет и нет никаких надежд, что ее удастся разработать — это раз. Два — плутоний-240 для ядерных боезарядов — "страшный яд", его присутствие делает их неустойчивыми. Очень важный вывод: энергетический плутоний, нарабатываемый в активных зонах энергетических ядерных реакторов, невозможно использовать для создания ядерного оружия, он полностью соответствует критериям Договора о нераспространении. Еще раз, поскольку это чрезвычайно важно. Уран-238 частично превращается в энергетический плутоний, который участвует в цепных реакциях и может быть использован для выработки энергии, при этом не происходит никаких нарушений Договора о нераспространении ядерного оружия. Балласт открытого ядерного топливного цикла, уран-238, способен порождать дополнительный делящийся материал для атомной энергетики.
Технология, которая превращает сотни тысяч тонн обедненного урана в новое ядерное топливо — возможна, что и было доказано Александром Лейпунским, чье имя ныне носит Физико-энергетический институт (ФЭИ) в Обнинске. Именно ФЭИ и именно под руководством Лейпунского стал разработчиком технологии реакторов на быстрых нейтронах, которую конструкторы ОКБМ (Опытно-конструкторского бюро) имени Игоря Африкантова воплотили в реакторах БН-350, БН-600 и БН-800. Основная идея очевидна уже из названия технологии: атомщики перестали замедлять нейтроны, а быстрые нейтроны увеличивают количество получаемого из урана-238 энергетического плутония. Поскольку уран-235 и плутоний-239 участвуют в цепных реакциях деления, у них есть обобщающее название — делящиеся материалы. Оставалось добиться конечного результата: добиться получения количества делящихся материалов на выходе из активной зоны реактора большего, чем их было на входе. Звучит несколько фантастично, но этот результат в России уже получен.
Мнение автора может не совпадать с позицией редакции.
Сергей Кондратьев - Sputnik Латвия, 1920, 30.04.2021
Баба-яга всегда против: Кондратьев о претензиях Литвы по БелАЭС
Лента новостей
0
Сначала новыеСначала старые
loader
В ЭФИРЕ
Заголовок открываемого материала